INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE & MANAGEMENT

Ulrich's Periodicals Directory @, ProQuest, U.S.A., Cabell's Directories of Publishing Opportunities, U.S.A., Google Scholar

Index Copernicus Publishers Panel, Poland with IC Value of 5.09 (2012) & number of libraries all around the world.

Circulated all over the world & Google has verified that scholars of more than 6408 Cities in 196 countries/territories are visiting our journal on regular basis.

CONTENTS

Sr. No.	TITLE & NAME OF THE AUTHOR (S)	Page No.
1.	IMPACT OF MICRO FINANCE THROUGH SHGs ON THE WEAKER SECTIONS OF SOCIETY SONIKA THAKUR & Dr. O. P. VERMA	1
2.	A STUDY ON PERCEPTIONS AND EXPECTATIONS OF TOURISTS REGARDING THE QUALITY OF SERVICES PROVIDED BY HOTELS IN NEPAL BIJAYA BIKRAM SHAH	8
3.	A STUDY ON EMPLOYEES SATISFACTION TOWARDS PERFORMANCE APPRAISAL PRACTICES AKASH PATEL	15
	REQUEST FOR FEEDBACK & DISCLAIMER	20

FOUNDER PATRON

Late Sh. RAM BHAJAN AGGARWAL

Former State Minister for Home & Tourism, Government of Haryana Former Vice-President, Dadri Education Society, Charkhi Dadri Former President, Chinar Syntex Ltd. (Textile Mills), Bhiwani

CO-ORDINATOR

Dr. BHAVFT

Former Faculty, Shree Ram Institute of Engineering & Technology, Urjani

ADVISOR

Prof. S. L. MAHANDRU

Principal (Retd.), Maharaja Agrasen College, Jagadhri

EDITOR

Dr. NAWAB ALI KHAN

Professor & Dean, Faculty of Commerce, Aligarh Muslim University, Aligarh, U.P.

CO-EDITOR

Dr. G. BRINDHA

Professor & Head, Dr.M.G.R. Educational & Research Institute (Deemed to be University), Chennai

EDITORIAL ADVISORY BOARD

Dr. SIKANDER KUMAR

Vice Chancellor, Himachal Pradesh University, Shimla, Himachal Pradesh

Dr. A SAJEEVAN RAO

Professor & Director, Accurate Institute of Advanced Management, Greater Noida

Dr. CHRISTIAN EHIOBUCHE

Professor of Global Business/Management, Larry L Luing School of Business, Berkeley College, USA

Dr. JOSÉ G. VARGAS-HERNÁNDEZ

Research Professor, University Center for Economic & Managerial Sciences, University of Guadalajara, Guadalajara, Mexico

Dr. TEGUH WIDODO

Dean, Faculty of Applied Science, Telkom University, Bandung Technoplex, Jl. Telekomunikasi, Indonesia

Dr. M. S. SENAM RAJU

Professor, School of Management Studies, I.G.N.O.U., New Delhi

Dr. KAUP MOHAMED

Dean & Managing Director, London American City College/ICBEST, United Arab Emirates

Dr. D. S. CHAUBEY

Professor & Dean (Research & Studies), Uttaranchal University, Dehradun

Dr. ARAMIDE OLUFEMI KUNLE

Dean, Department of General Studies, The Polytechnic, Ibadan, Nigeria

Dr. SYED TABASSUM SULTANA

Principal, Matrusri Institute of Post Graduate Studies, Hyderabad

Dr. MIKE AMUHAYA IRAVO

Principal, Jomo Kenyatta University of Agriculture & Tech., Westlands Campus, Nairobi-Kenya

Dr. NEPOMUCENO TIU

Chief Librarian & Professor, Lyceum of the Philippines University, Laguna, Philippines

Dr. BOYINA RUPINI

Director, School of ITS, Indira Gandhi National Open University, New Delhi

Dr. FERIT ÖLÇER

Professor & Head of Division of Management & Organization, Department of Business Administration, Faculty of Economics & Business Administration Sciences, Mustafa Kemal University, Turkey

Dr. SANJIV MITTAL

Professor & Dean, University School of Management Studies, GGS Indraprastha University, Delhi

Dr. SHIB SHANKAR ROY

Professor, Department of Marketing, University of Rajshahi, Rajshahi, Bangladesh

Dr. SRINIVAS MADISHETTI

Professor, School of Business, Mzumbe University, Tanzania

Dr. ABHAY BANSAL

Head, Department of Information Technology, Amity School of Engg. & Tech., Amity University, Noida **Dr. KEVIN LOW LOCK TENG**

Associate Professor, Deputy Dean, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia

Dr. OKAN VELI ŞAFAKLI

Professor & Dean, European University of Lefke, Lefke, Cyprus

Dr. V. SELVAM

Associate Professor, SSL, VIT University, Vellore

Dr. BORIS MILOVIC

Associate Professor, Faculty of Sport, Union Nikola Tesla University, Belgrade, Serbia

Dr. N. SUNDARAM

Associate Professor, VIT University, Vellore

Dr. IQBAL THONSE HAWALDAR

Associate Professor, College of Business Administration, Kingdom University, Bahrain

Dr. MOHENDER KUMAR GUPTA

Associate Professor, Government College, Hodal

Dr. ALEXANDER MOSESOV

Associate Professor, Kazakh-British Technical University (KBTU), Almaty, Kazakhstan

RODRECK CHIRAU

Associate Professor, Botho University, Francistown, Botswana

Dr. PARDEEP AHLAWAT

Associate Professor, Institute of Management Studies & Research, Maharshi Dayanand University, Rohtak **Dr. DEEPANJANA VARSHNEY**

Associate Professor, Department of Business Administration, King Abdulaziz University, Saudi Arabia

Dr. BIEMBA MALITI

Associate Professor, School of Business, The Copperbelt University, Main Campus, Zambia

Dr. SHIKHA GUPTA

Associate Professor, Lingaya's Lalita Devi Institute of Management & Sciences, New Delhi

Dr. KIARASH JAHANPOUR

Dean of Technology Management Faculty, Farabi Institute of Higher Education, Karaj, Alborz, I.R. Iran

Dr. SAMBHAVNA

Faculty, I.I.T.M., Delhi

YU-BING WANG

Faculty, department of Marketing, Feng Chia University, Taichung, Taiwan

Dr. TITUS AMODU UMORU

Professor, Kwara State University, Kwara State, Nigeria

Dr. SHIVAKUMAR DEENE

Faculty, Dept. of Commerce, School of Business Studies, Central University of Karnataka, Gulbarga

Dr. THAMPOE MANAGALESWARAN

Faculty, Vavuniya Campus, University of Jaffna, Sri Lanka

Dr. JASVEEN KAUR

Head of the Department/Chairperson, University Business School, Guru Nanak Dev University, Amritsar **SURAJ GAUDEL**

BBA Program Coordinator, LA GRANDEE International College, Simalchaur - 8, Pokhara, Nepal

Dr. RAJESH MODI

Faculty, Yanbu Industrial College, Kingdom of Saudi Arabia

Dr. BHAVET

Former Faculty, Shree Ram Institute of Engineering & Technology, Urjani

FORMER TECHNICAL ADVISOR

FINANCIAL ADVISORS

DICKEN GOYAL

Advocate & Tax Adviser, Panchkula

NEENA

Investment Consultant, Chambaghat, Solan, Himachal Pradesh

LEGAL ADVISORS

JITENDER S. CHAHAL

Advocate, Punjab & Haryana High Court, Chandigarh U.T.

CHANDER BHUSHAN SHARMA

Advocate & Consultant, District Courts, Yamunanagar at Jagadhri

SUPERINTENDENT

SURENDER KUMAR POONIA

1.

Nationality

CALL FOR MANUSCRIPTS

We invite unpublished novel, original, empirical and high quality research work pertaining to the recent developments & practices in the areas of Computer Science & Applications; Commerce; Business; Finance; Marketing; Human Resource Management; General Management; Banking; Economics; Tourism Administration & Management; Education; Law; Library & Information Science; Defence & Strategic Studies; Electronic Science; Corporate Governance; Industrial Relations; and emerging paradigms in allied subjects like Accounting; Accounting Information Systems; Accounting Theory & Practice; Auditing; Behavioral Accounting; Behavioral Economics; Corporate Finance; Cost Accounting; Econometrics; Economic Development; Economic History; Financial Institutions & Markets; Financial Services; Fiscal Policy; Government & Non Profit Accounting; Industrial Organization; International Economics & Trade; International Finance; Macro Economics; Micro Economics; Rural Economics; Co-operation; Dewelopment Planning; Development Studies; Applied Economics; Development Economics; Business Economics; Monetary Policy; Public Policy Economics; Real Estate; Regional Economics; Political Science; Continuing Education; Labour Welfare; Philosophy; Psychology; Sociology; Tax Accounting; Advertising & Promotion Management; Management Information Systems (MIS); Business Law; Public Responsibility & Ethics; Communication; Direct Marketing; E-Commerce; Global Business; Health Care Administration; Labour Relations & Human Resource Management; Marketing Research; Marketing Theory & Applications; Non-Profit Organizations; Office Administration/Management; Operations Research/Statistics; Organizational Behavior & Theory; Organizational Development; Production/Operations; International Relations; Human Rights & Duties; Public Administration; Population Studies; Purchasing/Materials Management; Retailing; Sales/Selling; Services; Small Business Entrepreneurship; Strategic Management Policy; Technology/Innovation; Tourism & Hospitality; Transportation Distribution; Algorithms; Artificial Intelligence; Compilers & Translation; Computer Aided Design (CAD); Computer Aided Manufacturing; Computer Graphics; Computer Organization & Architecture; Database Structures & Systems; Discrete Structures; Internet; Management Information Systems; Modeling & Simulation; Neural Systems/Neural Networks; Numerical Analysis/Scientific Computing; Object Oriented Programming; Operating Systems; Programming Languages; Robotics; Symbolic & Formal Logic; Web Design and emerging paradigms in allied subjects.

Anybody can submit the soft copy of unpublished novel; original; empirical and high quality research work/manuscript anytime in M.S. Word format after preparing the same as per our GUIDELINES FOR SUBMISSION; at our email address i.e. infoijrcm@gmail.com or online by clicking the link online submission as given on our website (FOR ONLINE SUBMISSION, CLICK HERE).

GUIDELINES FOR SUBMISSION (<u>DF MANUSCRIPT</u>
COVERING LETTER FOR SUBMISSION:	
	DATED:
THE EDITOR	
IJRCM	
Subject: SUBMISSION OF MANUSCRIPT IN THE AREA OF	
(e.g. Finance/Mkt./HRM/General Mgt./Engineering/Economics/Computer/	/IT/ Education/Psychology/Law/Math/other, please
specify)	
DEAR SIR/MADAM	
Please find my submission of manuscript titled 'your journals.	′ for likely publication in one c
I hereby affirm that the contents of this manuscript are original. Furthermore fully or partly, nor it is under review for publication elsewhere.	e, it has neither been published anywhere in any languag
I affirm that all the co-authors of this manuscript have seen the submitted v their names as co-authors.	ersion of the manuscript and have agreed to inclusion o
Also, if my/our manuscript is accepted, I agree to comply with the formalitie discretion to publish our contribution in any of its journals.	es as given on the website of the journal. The Journal ha
NAME OF CORRESPONDING AUTHOR	:
Designation/Post*	:
Institution/College/University with full address & Pin Code	:
Residential address with Pin Code	:
Mobile Number (s) with country ISD code	:
Is WhatsApp or Viber active on your above noted Mobile Number (Yes/No)	:
Landline Number (s) with country ISD code	:
E-mail Address	:
Alternate E-mail Address	:

^{*} i.e. Alumnus (Male Alumni), Alumna (Female Alumni), Student, Research Scholar (M. Phil), Research Scholar (Ph. D.), JRF, Research Assistant, Assistant Lecturer, Lecturer, Senior Lecturer, Junior Assistant Professor, Assistant Professor, Senior Assistant Professor, Co-ordinator, Reader, Associate Professor, Professor, Head, Vice-Principal, Dy. Director, Principal, Director, Dean, President, Vice Chancellor, Industry Designation etc. The qualification of author is not acceptable for the purpose.

NOTES:

- a) The whole manuscript has to be in **ONE MS WORD FILE** only, which will start from the covering letter, inside the manuscript. <u>pdf.</u> <u>version</u> is liable to be rejected without any consideration.
- b) The sender is required to mention the following in the SUBJECT COLUMN of the mail:
 - **New Manuscript for Review in the area of** (e.g. Finance/Marketing/HRM/General Mgt./Engineering/Economics/Computer/IT/ Education/Psychology/Law/Math/other, please specify)
- c) There is no need to give any text in the body of the mail, except the cases where the author wishes to give any **specific message** w.r.t. to the manuscript.
- d) The total size of the file containing the manuscript is expected to be below 1000 KB.
- e) Only the **Abstract will not be considered for review** and the author is required to submit the **complete manuscript** in the first instance.
- f) The journal gives acknowledgement w.r.t. the receipt of every email within twenty-four hours and in case of non-receipt of acknowledgment from the journal, w.r.t. the submission of the manuscript, within two days of its submission, the corresponding author is required to demand for the same by sending a separate mail to the journal.
- g) The author (s) name or details should not appear anywhere on the body of the manuscript, except on the covering letter and the cover page of the manuscript, in the manner as mentioned in the guidelines.
- 2. MANUSCRIPT TITLE: The title of the paper should be typed in **bold letters**, **centered** and **fully capitalised**.
- 3. AUTHOR NAME (S) & AFFILIATIONS: Author (s) name, designation, affiliation (s), address, mobile/landline number (s), and email/alternate email address should be given underneath the title.
- 4. **ACKNOWLEDGMENTS:** Acknowledgements can be given to reviewers, guides, funding institutions, etc., if any.
- 5. **ABSTRACT**: Abstract should be in **fully Italic printing**, ranging between **150** to **300 words**. The abstract must be informative and elucidating the background, aims, methods, results & conclusion in a **SINGLE PARA**. **Abbreviations must be mentioned in full**.
- 6. **KEYWORDS**: Abstract must be followed by a list of keywords, subject to the maximum of **five**. These should be arranged in alphabetic order separated by commas and full stop at the end. All words of the keywords, including the first one should be in small letters, except special words e.g. name of the Countries, abbreviations etc.
- 7. **JEL CODE:** Provide the appropriate Journal of Economic Literature Classification System code (s). JEL codes are available at www.aea-web.org/econlit/jelCodes.php. However, mentioning of JEL Code is not mandatory.
- 8. **MANUSCRIPT:** Manuscript must be in <u>BRITISH ENGLISH</u> prepared on a standard A4 size <u>PORTRAIT SETTING PAPER</u>. It should be free from any errors i.e. <u>grammatical</u>, <u>spelling</u> or <u>punctuation</u>. It must be thoroughly edited at your end.
- 9. **HEADINGS**: All the headings must be bold-faced, aligned left and fully capitalised. Leave a blank line before each heading.
- 10. **SUB-HEADINGS**: All the sub-headings must be bold-faced, aligned left and fully capitalised.
- 11. MAIN TEXT:

THE MAIN TEXT SHOULD FOLLOW THE FOLLOWING SEQUENCE:

INTRODUCTION

REVIEW OF LITERATURE

NEED/IMPORTANCE OF THE STUDY

STATEMENT OF THE PROBLEM

OBJECTIVES

HYPOTHESIS (ES)

RESEARCH METHODOLOGY

RESULTS & DISCUSSION

FINDINGS

RECOMMENDATIONS/SUGGESTIONS

CONCLUSIONS

LIMITATIONS

SCOPE FOR FURTHER RESEARCH

REFERENCES

APPENDIX/ANNEXURE

The manuscript should preferably be in **2000** to **5000 WORDS**, But the limits can vary depending on the nature of the manuscript.

- 12. **FIGURES & TABLES**: These should be simple, crystal **CLEAR**, **centered**, **separately numbered** & self-explained, and the **titles must be above the table/figure**. **Sources of data should be mentioned below the table/figure**. *It should be ensured that the tables/figures are referred to from the main text*.
- 13. **EQUATIONS/FORMULAE:** These should be consecutively numbered in parenthesis, left aligned with equation/formulae number placed at the right. The equation editor provided with standard versions of Microsoft Word may be utilised. If any other equation editor is utilised, author must confirm that these equations may be viewed and edited in versions of Microsoft Office that does not have the editor.
- 14. **ACRONYMS**: These should not be used in the abstract. The use of acronyms is elsewhere is acceptable. Acronyms should be defined on its first use in each section e.g. Reserve Bank of India (RBI). Acronyms should be redefined on first use in subsequent sections.
- 15. **REFERENCES**: The list of all references should be alphabetically arranged. *The author (s) should mention only the actually utilised references in the preparation of manuscript* and they may follow Harvard Style of Referencing. Also check to ensure that everything that you are including in the reference section is duly cited in the paper. The author (s) are supposed to follow the references as per the following:
- All works cited in the text (including sources for tables and figures) should be listed alphabetically.
- Use (ed.) for one editor, and (ed.s) for multiple editors.
- When listing two or more works by one author, use --- (20xx), such as after Kohl (1997), use --- (2001), etc., in chronologically ascending order.
- Indicate (opening and closing) page numbers for articles in journals and for chapters in books.
- The title of books and journals should be in italic printing. Double quotation marks are used for titles of journal articles, book chapters, dissertations, reports, working papers, unpublished material, etc.
- For titles in a language other than English, provide an English translation in parenthesis.
- Headers, footers, endnotes and footnotes should not be used in the document. However, you can mention short notes to elucidate some specific point, which may be placed in number orders before the references.

PLEASE USE THE FOLLOWING FOR STYLE AND PUNCTUATION IN REFERENCES:

BOOKS

- Bowersox, Donald J., Closs, David J., (1996), "Logistical Management." Tata McGraw, Hill, New Delhi.
- Hunker, H.L. and A.J. Wright (1963), "Factors of Industrial Location in Ohio" Ohio State University, Nigeria.

CONTRIBUTIONS TO BOOKS

• Sharma T., Kwatra, G. (2008) Effectiveness of Social Advertising: A Study of Selected Campaigns, Corporate Social Responsibility, Edited by David Crowther & Nicholas Capaldi, Ashgate Research Companion to Corporate Social Responsibility, Chapter 15, pp 287-303.

JOURNAL AND OTHER ARTICLES

• Schemenner, R.W., Huber, J.C. and Cook, R.L. (1987), "Geographic Differences and the Location of New Manufacturing Facilities," Journal of Urban Economics, Vol. 21, No. 1, pp. 83-104.

CONFERENCE PAPERS

Garg, Sambhav (2011): "Business Ethics" Paper presented at the Annual International Conference for the All India Management Association, New Delhi, India, 19–23

UNPUBLISHED DISSERTATIONS

Kumar S. (2011): "Customer Value: A Comparative Study of Rural and Urban Customers," Thesis, Kurukshetra University, Kurukshetra.

ONLINE RESOURCES

Always indicate the date that the source was accessed, as online resources are frequently updated or removed.

WEBSITES

Garg, Bhavet (2011): Towards a New Gas Policy, Political Weekly, Viewed on January 01, 2012 http://epw.in/user/viewabstract.jsp

IMPACT OF MICRO FINANCE THROUGH SHGS ON THE WEAKER SECTIONS OF SOCIETY

SONIKA THAKUR
Ph.D. RESEARCH SCHOLAR
DEPARTMENT OF COMMERCE
HIMACHAL PRADESH UNIVERSITY
SHIMLA

Dr. O. P. VERMA
PROFESSOR
DEPARTMENT OF COMMERCE
HIMACHAL PRADESH UNIVERSITY
SHIMLA

ABSTRACT

Micro finance is a path towards empowering the most marginalised among the poor to take charge of their life's requirements. It is practiced as an empowerment tool to uplift the weaker section of society. Though the higher spread of micro finance through SHGs are positive symptoms towards poverty alleviation and empowerment of weaker sections in Himachal Pradesh. The aim of this paper is to examine the impact of micro finance through SHGs on the weaker sections of society which includes SC, ST, minorities and women.

KEYWORDS

SHGs, Micro finance, weaker section of society.

JEL CODES

G21, I38, I39.

INTRODUCTION

n India, certain sections of population, viz, the scheduled castes, scheduled tribes, the other backward classes, and the minorities have been historically at a disadvantage. These sections have been facing educational, social, economic and political backwardness since long. Therefore, the government has made elaborate arrangements to not only to protect the interests of the weaker sections but also to provide them packages of affirmative action. The government has taken a number of steps to uplift the weaker sections of society and to reduce inequalities in income, status and opportunities for such disadvantaged sections of societies. But none of these programs achieved their desired goal due to poor execution and mal-practices on the part of government officials.¹ The need for microfinance arises from the inability of the banking system to provide for access to financial services to the poor and lower income households. Microfinance institutions were started to cater to the unbanked population of the country and embrace them into the market economy by enabling them to involve and engage in income-generating opportunities for livelihood promotion. As the name suggests, the term microfinance means 'very small credit facilities provided to the needy and most poor section of the society'. It is not just a tool for poverty eradication but also for individual development, growth in entrepreneurial activities in economically backward areas. So microfinance is a system for providing small loans to poor entrepreneurs, typically self-employed and running

India occupies a significant place and a niche in global microfinance through promotion of the SHGs under SHG-Bank Linkage (SBL) programme and the Microfinance Institution (MFI) model. Microfinance to Self Help Groups (SHGs) may be considered as a vital option for meeting the financial needs of those poorer sections of the society. Micro finance model in India devises the flow of formal banking loans to the poor basically through Self Help Groups either directly under SHG - Bank linkage programme or through on-lending by Micro Finance Institutions. Out of the two, SHG- Bank linkage model predominantly covers the area of micro credit in India.

a home based business. Micro-financing is available to poor entrepreneurs and to the low-income households who have no collateral and lack access to standard

A self-help group (SHG) is a small economically homogenous group of people having common goal of socio-economic development, for discussing their problems and resolving through appropriate participatory decision-making. The main objective of the Self-Help Group is to provide economic opportunities to the economically disadvantaged groups to establish and gradually improve their entrepreneurial ambitions through regular and small savings to improve their socio-economic status by organising and participating in their own voluntary and democratic association. Self-Help Group is a social design in which people participate by making themselves socially and economically accountable to each other. All Self-Help Groups are not necessarily linked to bank because they do not need external credit except the support from their sponsoring organisations. It should be clearly understood that the Self-Help Group is a small organisation of small people with small objectives. It goes to demonstrate that small efforts can be translated into bigger power.³

The formation of SHGs aims for the development of socio-economic condition of the group, their quality of life and to help the group to become self-dependent, which indirectly relates to the socio-economic development of the country. The groups which are formed with thrift and credit as an entry point have shown that the poor can secure greater access to credit and other supportive services for enhancing their income levels. SHGs have the potential to create a socio-economic revolution in the rural areas of our country they have proved that they could indeed bring about a change in the mindset of very conservative and traditional bound illiterate in rural areas.⁴

REVIEW OF LITERATURE

Loganathan, P and Asokan, R. (2006) reveals that SHG had provided access to credit to their members, promoted saving, reduced dependence on money lenders and above all empowered rural women. The study made by Singh Y K et al. (2007) reveals that Self Help Groups have emerged in order to help poor women to secure inputs like credit and other services. It is a viable alternative to achieve the objectives of rural development and to get participation of women's in all rural development programmes. Ramachandran and Balakrishan (2008) examined the impact of Self-Help- Groups on women's empowerment in Kanyakumari district. The study revealed that SHGs have the power to create a socio-economic revolution in rural areas of our country. SHGs have not only produced tangible assets and improved living conditions of the members, but also helped in changing much of their social outlook and attitudes. Aluru (2010) reveals that the SHG movement involves poor people across the country and interference with the design of the SHG movement has the potential to vitiate the credit culture and affect the relationship of SHGs with the banking structure. Anuradha (2012) recognised SHGs as a popular grass root technique to eliminate poverty by advancing the socioeconomic interests of the weaker sections, non-bankable and neglected segments of the society. The effect of SHGs is invoking positive orientation amongst the rural women and making them socially and economically empowered and has been instrumental towards accomplishing inclusive growth of the Indian economic

system. Savadatti (2015) have highlighted the importance of microfinance to mitigate the challenges of poverty and migration. It also suggested that better managed SHGs improve literacy, generate employment and improve standard of living. Kumar, Agrawal and Gambhir (2017) observed that Self Help Groups Bank Linked Micro Financing (SHGs BLMF) model has proved its effectiveness in improving the real life of rural poor. This model of financing has outraced moneylenders and village sahukars in providing credit to rural sector. Chiru, Partakson Romun (2018) opined that Self Help Groups play the significant roles for economic development right from the village levels and beyond, it has the chain of developmental perspective. Therefore, pro-active role of government will bring the better economic environment in all square of development, it needs the better lower credit rate and subsidies are major concern to fulfil the purposed of the Self Help Groups.

OBJECTIVES OF THE STUDY

The study has been conducted with a view to accomplish the following objectives:

- 1. To study the demographic profile of members associated with SHGs.
- 2. To identify the significant impact of micro finance through Self Help Groups on the socio-economic development of the people under study.

RESEARCH METHODOLOGY

The study used primary data and secondary data for analysis according to the objective set out in the study. Primary data has been collected from the members of self help groups through judgement and quota sampling. A questionnaire was prepared for the collection of data. To meet the objectives of the study, a five point likert scale has been developed for certain identifying variables. These statements on five point scale are i.e. (1) strongly agree (2) agree (3) neutral (4) disagree (5) strongly disagree. On the basis of responses from members, factor analysis has been done to extract the factors from observed variables which affect the empowerment of weaker sections through micro finance.

RESULT S AND DISCUSSIONS

TABLE 1: DEMOGRAPHIC PROFILE OF RESPONDENTS

Parameter	Description	N	Frequency(%)
	Below 30 year	156	21.7
Age	30-45 year	336	46.7
	Above 45 years	228	31.7
	Total	720	100.0
	Male	125	17.4
	Female	595	82.6
Gender	Total	720	100.0
	Illiterate	246	34.2
	Primary	136	18.9
	Matriculate	200	27.8
	Intermediate	92	12.8
Education	Degree & above	46	6.4
	Total	720	100.0
Occupation	Agriculture	470	65.3
	Labour	76	10.6
	Business	62	8.6
	Service	112	15.6
	Total	720	100.0
	Joint	388	53.9
	Nuclear	234	32.5
Family Structure	Extended	98	13.6
	Total	720	100.0
Family Size	Below 5	138	19.1
	5-8	174	24.2
	Above 8	408	56.7
	Total	720	100.0
Annual Income	Below 30,000	302	41.9
	30,000-60,000	140	19.4
	Above 60,000	278	38.6
	Total	720	100.0

On the basis of the demographic profile of the respondents it can be summed up that most of the members of the SHGs (46.7 percent) in the study area are belonging to the age group of 30-45 years, followed by31.7 percent in the age group of above 45years. As regards to the gender-wise distribution of SHGs members it has been found that overall 82.6 percent of respondents are females in the two districts under study. With respect to education, maximum members are illiterate as compared to others, i.e., primary (18.9), matriculate (27.8), intermediate (12.8) and degree and above (6.4). As regards to the occupation details of the SHGs members, the highest percentage of members (65.3%) have reported agriculture as their domain occupation followed by service. Further, it has been found that majority of the respondents (53.9%) have joint family system. Most of the SHG members (56.7%) have above 8 family members. A majority of SHG members (41.9 percent) lies in the income group of below Rs. 30,000.

IMPACT OF MICROFINANCE

Micro finance plays an important role in poverty reduction. Micro finance provides small loans to the poor people living below the poverty line. The self-employment projects that earn income for their existence, letting them to uphold themselves and their families. The weaker section of society is not able to reap the benefits of the various developmental schemes launched by the government for their betterment. For raising their socio-economic conditions, SHGs, which are an informal association of members in any rural or semi-urban area, are working very well with the objective of empowering members economically, socially, politically, institutionally and spiritually. Thousands of the people in India are building their lives, their families and their society through SHGs. So, due to importance of SHGs, the main impacts of SHGs are the following:

Table-2 explains, the descriptive statistics of contribution of micro-finance for the empowerment of weaker sections through Self Help Groups in the study area. The table shows the values of mean, standard deviation, skewness and kurtosis for forty-three variables. Further, the table depicts that the mean value is highest for economic independence, better access to loan /credit facility, make household purchase, minimize family dependence to money lenders, asset creation, self-employment, poverty alleviation and increases the capacity to spend more as compared to other variables. Therefore, it can be said that these variables are the most influenced variables which are supportive for the upliftment of weaker sections through SHGs.

c »:	TABLE 2: ANALYSIS OF FACTORS CONTRIBUTING TOWARDS EMPOWERMENT OF WEAKER SECTIONS							1,,
S. No.	Statements	N	Min.	Max.	Mean	Std. deviation	Skewness	Kurtosis
1	Economic Independence	720	1	5	3.6111	.85947	215	573
2	Better access to loan /credit facility	720	1	5	3.6111	.85947	215	573
3	Make household purchase	720	1	5	3.6111	.85947	215	573
4	Minimize family dependence to money lenders	720	1	5	3.6111	.85947	215	573
5	Asset creation	720	1	5	3.6111	.85947	215	573
6	Self-employment	720	1	5	3.6111	.85947	215	573
7	Poverty alleviation	720	1	5	3.6111	.85947	215	573
8	Increases the capacity to spend more	720	1	5	3.6111	.85947	215	573
9	Increased family income	720	1	5	3.2083	.98582	.185	-1.110
10	Respect in family	720	1	5	3.2083	.98582	.185	-1.110
11	Authority in family	720	1	5	3.2083	.98582	.185	-1.110
12	Helpful for dependents	720	1	5	3.2083	.98582	.185	-1.110
13	Improvement in basic facilities and amenities	720	1	5	3.2083	.98582	.185	-1.110
14	Better schooling of children	720	1	5	3.2083	.98582	.185	-1.110
15	Participation in economic decision making	720	1	5	3.2083	.98582	.185	-1.110
16	Better living standard	720	1	5	3.2083	.98582	.185	-1.110
17	Change in family violence	720	1	5	3.2083	.98582	.185	-1.110
18	Minimized family indebtness	720	1	5	3.2083	.98582	.185	-1.110
19	Medical care to family members	720	1	5	3.2083	.98582	.185	-1.110
20	Ability to provide nutritious food	720	1	5	3.2083	.98582	.185	-1.110
21	Confidence to talk in any meeting	720	1	5	2.9583	.97874	006	319
22	Confidence to talk with family	720	1	5	2.9583	.97874	006	319
23	Confidence to talk in public	720	1	5	2.9583	.97874	006	319
24	Confidence of facing financial crisis	720	1	5	2.9583	.97874	006	319
25	Confidence of facing health crisis	720	1	5	2.9583	.97874	006	319
26	Confidence of meeting official people	720	1	5	2.9583	.97874	006	319
27	Improvement in technical and practical skills through training	720	1	5	2.9583	.97874	006	319
28	Acquisition of skills for income generation	720	1	5	2.9583	.97874	006	319
29	Freedom of action	720	1	5	2.9583	.97874	006	319
30	Self-actualisation	720	1	5	2.9583	.97874	006	319
31	Exposure to outside world	720	1	5	2.9583	.97874	006	319
32	Increased communication ability	720	1	5	2.9583	.97874	006	319
33	Discover new possibilities and options	720	1	5	2.9583	.97874	006	319
34	Respect from the society	720	1	5	2.6111	1.02209	028	842
35	Social involvement	720	1	5	2.6111	1.02209	028	842
36	Active participation in organized activities	720	1	5	2.6111	1.02209	028	842
37	Participation in the help of others	720	1	5	2.6111	1.02209	028	842
38	Participation in controlling village problems like roads, drink-	720	1	5	2.6111	1.02209	028	842
	ing water, infrastructure, education							
39	Participation in political activities	720	1	5	2.1806	.98425	.729	438
40	Political awareness	720	1	5	2.1806	.98425	.729	438
41	Membership in local bodies	720	1	5	2.1806	.98425	.729	438
42	Independence in casting vote	720	1	5	2.1806	.98425	.729	438
			1	 	 	 	1	+

Further, the calculated values of standard deviation expose high variation in the factors affecting the empowerment of weaker sections. In case of skewness, most values are concentrated on the right of the mean with extreme value to the right, so it can be said that distribution is negatively skewed. In case of kurtosis the calculated values are less than zero which reveals platykurtic distributions for the responses given by respondents. Further, the mean scores for all variables been found more than two which reveals moderate effect on socio-economic development of weaker sections through SHGs.

1

5

2.1806 .98425

.729

720

KAISER-MEYER-OLKIN MEASURE OF SAMPLING ADEQUACY AND BARTLETT'S TEST OF SPHERICITY

Participation in gram sabha

Table-3 depicts the results of a Kaiser-Meyer-Olikin measure of sampling adequacy and Bartlett's test of Sphericity. The Kaiser-Meyer-Olkin (KMO) measures the sampling adequacy which should be greater than 0.5 for a satisfactory factor analysis to proceed. This measure assesses the overall significance of the correlation matrix with the Bartlett test, When taken overall, the results are significant at 1 percent level which is 8629.34. The Kaiser-Meyer-Olkin (KMO) measures the sampling adequacy which should be greater than 0.5 for a satisfactory factor analysis to proceed.

TABLE 3: KMO AND BARTLETT'S TEST

Kaiser-Meyer-Olkin Measure	0.866	
Bartlett's Test of Sphericity	Approx. Chi-Square	8629.34
	Sig.	0.000

Table-3 shows that the Kaiser-Meyer-Olkin measure is 0.866, which implies that the sample is adequate and factor analysis is appropriate for the data. The Bartlett's test is another indication of the strength of the relationship among variables. This tests the null hypothesis that the correlation matrix is an identity matrix in which each variable correlates perfectly with itself but has no correlation with other variables. Further, the table shows that Bartlett's test of Sphericity is significant i.e., its associated probability is less than 0.05. In fact, it is actually 0.000 i.e., the significance level is small enough to reject the null hypothesis. This means that correlation matrix is not an identify matrix. All the measures tested above, indicate that the reduced set of variables is appropriate for factor analysis.

TOTAL VARIANCE

Table-4 shows the total variance explained. Further, table shows all the factors extractable from the analysis along with their eigenvalues, the percent of variance attributable to each factor, the cumulative variance of the factor and the previous factors.

TABLE 4: TOTAL VARIANCE EXPLAINED									
Component									are Loadings
	Total	% of variance	Cumulative	Total	% of variance	Cumulative	Total	% of variance	Cumulative
1	9.884	24.447	24.447	9.884	24.447	24.447	4.831	11.949	11.949
2	3.246	8.028	32.475	3.246	8.028	32.475	3.984	9.854	21.803
3	2.160	5.342	37.817	2.160	5.342	37.817	3.450	8.548	30.351
4	1.893	4.682	42.499	1.893	4.682	42.499	3.105	7.679	38.03
5	1.141	2.822	45.321	1.141	2.822	45.321	2.948	7.291	45.321
6	.982	2.428	47.749						
7	.923	2.282	50.031						
8	.911	2.253	52.284						
9	.875	2.164	54.448						
10	.823	2.043	56.491						
11	.815	2.015	58.506						
12	.809	2.000	60.506						
13	.798	1.973	62.479						
14	.759	1.877	64.356						
15	.741	1.832	66.188						
16	.701	1.733	67.921						
17	.692	1.711	69.631						
18	.684	1.691	71.322						
19	.661	1.634	72.956						
20	.651	1.610	74.566						
21	.636	1.573	76.139						
22	.627	1.550	77.689						
23	.612	1.513	79.202						
24	.604	1.493	80.695						
25	.597	1.476	82.171						
26	.564	1.395	83.566						
27	.552	1.365	84.931						
28	.535	1.323	86.254						
29	.521	1.288	87.542						
30	.507	1.254	88.796						
31	.479	1.184	89.980						
32	.468	1.157	91.137						
33	.441	1.090	92.227						
34	.413	1.021	93.248						
35	.394	.974	94.222						
36	.378	.934	95.156						
37	.360	.890	96.046						
38	.341	.846	96.889						
39	.322	.821	97.710						
40	.289	.714	98.424						
41	.251	.620	99.044						

Extraction Method: Principal Component Analysis.

.201

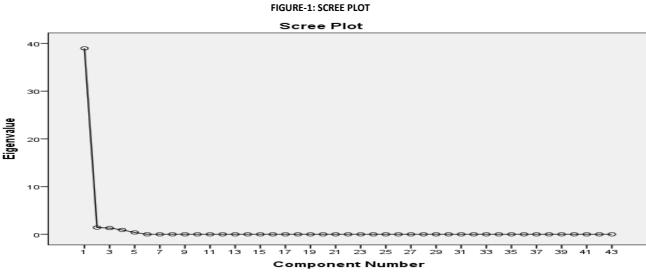
.186

.497

.460

99.540

100.00


42

43

The table reveals that, the first factor accounts for 24.447 % of the variance, the second factor 8.028 %, third factor 5.342%, fourth factor 4.682% and the fifth factor 2.822%. All the remaining factors are not significant.

SCREE PLOT

Figure-1 shows the scree plot; it is a graph of the eigenvalues against all the factors. The graph is useful for determining how many factors to retain.

Further, the graph depicts that the curve begins to flatten between factors four and five. Therefore, only five factors have been retained.

COMPONENT MATRIX

TABLE 5: COMPONENT MATRIX

TABLE 5: COMPONENT MATRIX	Component				
	1 2 3 4 5				5
Economic Independence	0.552	0.221	0.465	-0.141	-0.046
Better access to loan /credit facility	0.686	0.046	0.507	-0.195	-0.047
Make household purchase	0.692	0.171	0.451	-0.083	-0.002
Minimize family dependence to money lenders	0.722	0.145	0.282	-0.006	-0.164
Asset creation	0.711	0.112	0.271	-0.119	-0.127
Self-employment	0.257	0.655	-0.175	0.132	0.131
Poverty alleviation	0.226	0.737	-0.106	0.009	-0.150
Increases the capacity to spend more	0.396	0.643	-0.135	0.126	-0.165
Increased family income	0.682	0.037	0.187	-0.236	0.218
Respect in family	0.432	0.194	-0.196	0.076	0.302
Authority in family	0.783	-0.100	-0.194	-0.225	0.094
Helpful for dependents	0.786	-0.103	-0.275	-0.162	0.059
Improvement in basic facilities and amenities	0.827	0.118	-0.164	-0.101	0.225
Better schooling of children	0.791	-0.170	-0.229	-0.095	0.235
Participation in economic decision making	0.712	0.124	-0.367	-0.126	0.078
Better living standard	0.811	-0.075	-0.038	0.051	-0.247
Change in family violence	0.778	-0.071	-0.184	0.007	-0.254
Minimized family indebtness	.820	-0.046	-0.114	-0.016	-0.136
Medical care to family members	0.842	-0.043	-0.025	-0.070	-0.182
Ability to provide nutritious food	0.840	-0.037	-0.056	0.154	-0.166
Confidence to talk in any meeting	0.847	-0.165	-0.008	0.366	0.135
Confidence to talk with family	0.872	-0.180	0.081	0.352	0.196
Confidence to talk in public	0.678	-0.040	0.012	0.306	0.069
Confidence of facing financial crisis	0.578	-0.121	0.242	0.132	0.166
Confidence of facing health crisis	0.544	-0.195	0.382	0.134	0.248
Confidence of meeting official people	0.512	-0.143	0.346	0.113	0.236
Improvement in technical and practical skills through training	0.503	-0.156	0.334	0.103	0.217
Acquisition of skills for income generation	0.479	-0.129	0.318	0.101	0.205
Freedom of action	0.461	-0.103	0.311	0.098	0.196
Self-actualisation	0.443	-0.091	0.302	0.051	0.095
Exposure to outside world	0.431	-0.156	0.296	0.087	0.077
Increased communication ability	0.413	-0.090	0.276	0.291	0.129
Discover new possibilities and options	0.407	-0.129	0.219	0.210	0.121
Respect from the society	0.392	-0.121	0.205	0.191	0.154
Social involvement	0.386	-0.125	0.177	0.189	0.150
Active participation in organized activities	0.369	0.046	0.078	0.165	0.134
Participation in the help of others	0.354	-0.123	0.071	0.098	0.123
Participation in controlling village problems like roads, drinking water, infrastructure, education	0.345	-0.137	0.114	0.164	0.133
Participation in political activities	0.336	-0.159	0.123	0.159	0.143
Political awareness	0.328	-0.146	0.117	0.169	0.158
Membership in local bodies	0.319	-0.151	0.171	0.196	0.173
Independence in casting vote	0.315	-0.189	0.251	0.132	0.145
Participation in gram sabha	0.307	-0.166	0.139	0.141	0.093

Extraction Method: Principal Component Analysis

Table-5 shows the component matrix results. The table reveals the loadings of the forty-three variables on the five factors extracted. The higher the absolute value of loading, the more the factor contributes to the variable.

ROTATED COMPONENT MATRIX

Table- 6 exhibit the results of rotated component matrix. Further, the table reports that five factor are extracted through factor analysis i.e., economic empowerment, family empowerment, personal empowerment, social empowerment and political empowerment. The rotation matrix reduces the number of factors on which the variables under investigation have high loadings.

a. Five Components Extracted

TADIEC	· DOTATED	COMPONENT MATRIX	

1 2 3 4 5 1 0.852 0.021 0.464 -0.241 -0.246 2 0.786 0.046 0.502 -0.105 -0.096 3 0.782 0.272 0.654 -0.285 -0.204 4 0.726 0.145 0.181 -0.203 -0.265 5 0.721 0.314 0.370 -0.205 -0.125 6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.222 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.336 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 </th <th colspan="6">TABLE 6: ROTATED COMPONENT MATRIX Variables Component</th>	TABLE 6: ROTATED COMPONENT MATRIX Variables Component							
1 0.852 0.021 0.464 -0.241 -0.246 2 0.786 0.046 0.502 -0.105 -0.096 3 0.782 0.272 0.654 -0.285 -0.204 4 0.726 0.145 0.181 -0.203 -0.265 5 0.721 0.314 0.370 -0.205 -0.125 6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14	variables	<u> </u>						
2 0.786 0.046 0.502 -0.105 -0.096 3 0.782 0.272 0.654 -0.285 -0.204 4 0.726 0.145 0.181 -0.203 -0.265 5 0.721 0.314 0.370 -0.205 -0.125 6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.678 -0.134 0.225 0.138 15					-			
3 0.782 0.272 0.654 -0.285 -0.204 4 0.726 0.145 0.181 -0.203 -0.265 5 0.721 0.314 0.370 -0.205 -0.125 6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
4 0.726 0.145 0.181 -0.203 -0.265 5 0.721 0.314 0.370 -0.205 -0.125 6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
5 0.721 0.314 0.370 -0.205 -0.128 6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								
6 0.705 0.455 -0.106 0.202 0.234 7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19<								
7 0.666 0.337 -0.128 0.099 -0.186 8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20								
8 0.594 0.443 -0.154 0.228 -0.159 9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21<								
9 0.281 0.837 0.580 -0.134 0.314 10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22<								
10 0.231 0.794 -0.184 0.476 0.306 11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23								
11 0.281 0.760 -0.194 0.236 0.496 12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24	9	0.281	0.837	0.580	-0.134	0.314		
12 0.484 0.743 -0.109 -0.204 0.259 13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.233 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25	10	0.231	0.794	-0.184				
13 0.327 0.718 -0.262 -0.124 0.326 14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26<		0.281	0.760	-0.194	0.236	0.496		
14 0.591 0.708 -0.149 -0.295 0.138 15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 </th <th>12</th> <th>0.484</th> <th>0.743</th> <th>-0.109</th> <th>-0.204</th> <th>0.259</th>	12	0.484	0.743	-0.109	-0.204	0.259		
15 0.212 0.694 -0.207 -0.115 0.276 16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 <th>13</th> <th>0.327</th> <th>0.718</th> <th>-0.262</th> <th>-0.124</th> <th>0.326</th>	13	0.327	0.718	-0.262	-0.124	0.326		
16 0.511 0.675 -0.134 0.262 -0.109 17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 <th>14</th> <th>0.591</th> <th>0.708</th> <th>-0.149</th> <th>-0.295</th> <th>0.138</th>	14	0.591	0.708	-0.149	-0.295	0.138		
17 0.578 0.671 -0.043 0.22 -0.156 18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30	15	0.212	0.694	-0.207	-0.115	0.276		
18 0.420 0.646 -0.106 -0.01 -0.112 19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31	16	0.511	0.675	-0.134	0.262	-0.109		
19 0.142 0.643 0.129 0.172 -0.104 20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32	17	0.578	0.671	-0.043	0.22	-0.156		
20 0.140 0.537 -0.154 0.234 0.062 21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.112 0.226 33 0.305 -0.106	18	0.420	0.646	-0.106	-0.01	-0.112		
21 0.346 -0.112 0.668 0.264 0.239 22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.254 34	19	0.142	0.643	0.129	0.172	-0.104		
22 0.372 -0.189 0.641 0.204 0.293 23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35	20	0.140	0.537	-0.154	0.234	0.062		
23 0.378 -0.140 0.612 0.296 0.164 24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36	21	0.346	-0.112	0.668	0.264	0.239		
24 0.460 -0.109 0.602 0.234 0.260 25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37	22	0.372	-0.189	0.641	0.204	0.293		
25 0.349 -0.104 0.582 0.239 0.145 26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38	23	0.378	-0.140	0.612	0.296	0.164		
26 0.314 -0.142 0.545 0.102 0.138 27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39	24	0.460	-0.109	0.602	0.234	0.260		
27 0.303 -0.124 0.534 0.206 0.319 28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40	25	0.349	-0.104	0.582	0.239	0.145		
28 0.408 -0.105 0.518 0.008 0.194 29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41	26	0.314	-0.142	0.545	0.102	0.138		
29 0.365 -0.108 0.510 0.066 0.295 30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	27	0.303	-0.124	0.534	0.206	0.319		
30 0.348 -0.191 0.502 0.154 0.182 31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	28	0.408	-0.105	0.518	0.008	0.194		
31 0.405 -0.169 0.496 0.007 0.062 32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	29	0.365	-0.108	0.510	0.066	0.295		
32 0.419 -0.192 0.476 0.195 0.226 33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	30	0.348	-0.191	0.502	0.154	0.182		
33 0.305 -0.106 0.419 0.112 0.225 34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	31	0.405	-0.169	0.496	0.007	0.062		
34 0.365 -0.101 0.105 0.891 0.254 35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	32	0.419	-0.192	0.476	0.195	0.226		
35 0.485 -0.005 0.276 0.789 0.259 36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	33	0.305	-0.106	0.419	0.112	0.225		
36 0.306 0.148 0.176 0.765 0.109 37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	34	0.365	-0.101	0.105	0.891	0.254		
37 0.366 -0.003 0.271 0.698 0.264 38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	35	0.485	-0.005	0.276	0.789	0.259		
38 0.302 -0.007 0.154 0.564 0.164 39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	36	0.306	0.148	0.176	0.765	0.109		
39 0.314 -0.100 0.234 0.244 0.756 40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	37	0.366	-0.003	0.271	0.698	0.264		
40 0.288 -0.045 0.027 0.354 0.750 41 0.216 -0.051 0.271 0.271 0.706	38	0.302	-0.007	0.154	0.564	0.164		
41 0.216 -0.051 0.271 0.271 0.706	39	0.314	-0.100	0.234	0.244	0.756		
	40	0.288	-0.045	0.027	0.354	0.750		
	41	0.216	-0.051	0.271	0.271	0.706		
42 0.219 -0.086 0.351 0.246 0.634	42	0.219	-0.086	0.351	0.246	0.634		
43 0.216 -0.064 0.239 0.294 0.546	43	0.216	-0.064	0.239	0.294	0.546		

Extraction Method: Principal component analysis.

Rotation Method: Varimax with Kaiser Normalisation.

Rotation converged in 6 iterations.

Further, table reports the loading of different statements on identified five factors. Following variables are loaded on factor-1 i.e., economic empowerment is economic Independence, better access to loan /credit facility, make household purchase, minimize family dependence to money lenders, asset creation, Self-employment, Poverty alleviation and increases the capacity to spend more. The variables which are loaded on factor-2, i.e., family empowerment are as follow: increased family income, respect in family, authority in family, helpful for dependents, improvement in basic facilities and amenities, better schooling of children, participation in economic decision making, better living standard, change in family violence, minimized family indebtness, medical care to family members and ability to provide nutritious food. In the factor-3 i.e., personal empowerment are confidence to talk in any meeting, confidence to talk with family, confidence to talk in public, confidence of facing financial crisis, confidence of facing health crisis, confidence of meeting official people, improvement in technical and practical skills through training, acquisition of skills for income generation, freedom of action, self-actualisation, exposure to outside world, increased communication ability and discover new possibilities and options. The factor-4 i.e., social empowerment is respect from the society, social involvement, active participation in organized activities, participation in the help of others and participation in controlling village problems like roads, drinking water, infrastructure, education. The factor-5 i.e., political empowerment is participation in political activities, political awareness, membership in local bodies, independence in casting vote and participation in gram sabha.

RELIABILITY STATISTICS

The results of reliability statistics have been presented in Table-7. The reliability of the construct is determined by computing the Cronbach's alpha. Cronbach's coefficient alpha value of 0.6 is considered acceptable for the exploratory purposes, 0.7 is considered adequate, and 0.8 good for confirmatory purposes.

TABLE 7: RELIABILITY STATISTICS

Cronbach's Alpha	Cronbach's Alpha based on Standardized Items	No. of Items
0.905	0.912	43

Further, table reveals that the Cronbach alpha value based on standardized items obtained is 0.912 which shows high reliability of the scale. The overall reliability and validity of the scale as depicted by Cronbach alpha is well above 0.7, therefore it is valid to use this scale.

CONCLUSION

The study results proved that the micro finance through SHGs is a way to raise the income level and improve the living standard of the weaker section of society. Self Help Group is an important tool which helps the weaker section to acquire power for their self-supportive life. Empowering weaker section is not just for meeting their economic needs but also more holistic social development. The intervention of micro finance through SHGs has positive impact on the economic and social status of the members in terms of increase in income, savings, employment generation, asset creation, decrease in the dependency on money lenders, improvement in decision making skills, participation in community affairs etc.

SUGGESTIONS

- More research should be carried out to assess the impact of micro credit through SHGs. The impact assessment should be more focused on socio-economic empowerment of members, social change, dynamics of groups, business, leadership, promotion of viable micro enterprises etc.
- > The performance of SHGs should be closely monitored at the Block/ DRDA level through field visits, progress of SHG towards income generation and understanding the hurdles in income generation process and taking corrective measures immediately as a delay will cause closure of the group before reaching maturity.

REFERENCES

- 1. Ali, Usma. (2015). Analysis the Impact of Microfinance on Poverty Reduction. Journal of Poverty, Investment and Development, 13, 104.
- 2. Morduch, J. (2013). How Microfinance Really Works?. The Milken Institute Review, 52.
- 3. Lina, Joy, Prema, A. and S. Krishnan (2008). Determinants of Group Performance of Women-led Agro-processing Self-help Groups in Kerala, *Agricultural Economics Research Review*, 21, 356.
- 4. Mahajan, R.K. (2013), Microfinance, Self Help Groups and Women Empowerment: A Case Study, Gender Justice and Women Empowerment, Regal Publications, 33-62.

REQUEST FOR FEEDBACK

Dear Readers

At the very outset, International Journal of Research in Commerce & Management (IJRCM) acknowledges & appreciates your efforts in showing interest in our present issue under your kind perusal.

I would like to request you to supply your critical comments and suggestions about the material published in this issue, as well as on the journal as a whole, on our e-mail infoijrcm@gmail.com for further improvements in the interest of research.

If you have any queries, please feel free to contact us on our e-mail infoijrcm@gmail.com.

I am sure that your feedback and deliberations would make future issues better – a result of our joint effort.

Looking forward to an appropriate consideration.

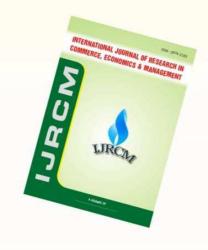
With sincere regards

Thanking you profoundly

Academically yours

Sd/-

Co-ordinator


DISCLAIMER

The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publishers/Editors. Publication does not constitute endorsement by the journal. Neither the Journal nor its publishers/Editors/Editorial Board nor anyone else involved in creating, producing or delivering the journal or the materials contained therein, assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information provided in the journal, nor shall they be liable for any direct, incidental, special, consequential or punitive damages arising out of the use of information/material contained in the journal. The journal, neither its publishers/Editors/ Editorial Board, nor any other party involved in the preparation of material contained in the journal represents or warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such material. Readers are encouraged to confirm the information contained herein with other sources. The responsibility of the contents and the opinions expressed in this journal are exclusively of the author (s) concerned.

ABOUT THE JOURNAL

In this age of Commerce, Economics, Computer, I.T. & Management and cut throat competition, a group of intellectuals felt the need to have some platform, where young and budding managers and academicians could express their views and discuss the problems among their peers. This journal was conceived with this noble intention in view. This journal has been introduced to give an opportunity for expressing refined and innovative ideas in this field. It is our humble endeavour to provide a springboard to the upcoming specialists and give a chance to know about the latest in the sphere of research and knowledge. We have taken a small step and we hope that with the active cooperation of like-minded scholars, we shall be able to serve the society with our humble efforts.

